
preview of MC 12

Hey!
I am Félix-Antoine
Lead of research software dev. team

Université Laval

Principal developer of Magic Castle

2

Open-source software that reproduces the
HPC user experience in the cloud

3

Straight-forward process

Connect

Connect to the cluster
using your protocol of
choice:
● SSH
● HTTPS

Edit

Edit a single text file
describing the cluster
to create as code.

Apply

Execute the
infrastructure code
and create the virtual
resources.

4

Magic Castle Components

5

Network, subnetwork, interfaces, DNS

Volumes, storage, filesystems

Virtuals machines

Configuration

Batteries included

A cloud account

Magic Castle can be used
with on-prem OpenStack
and commercial clouds

Requirements

Terraform

Read and execute Magic
Castle infrastructure code

7

How it works

8

Magic Castle Steps

9

ConnectEdit Apply

10

Edit

1. Download a Magic Castle release for your
cloud of choice

2. Uncompress the archive

11

Edit

azure common dns main.tf

magic_castle-azure-12.0.0

12

Edit

module "azure" {

 source = "./azure"

 config_git_url = "..."

 config_version = "12.0.0"

main.tf

13

Edit

 cluster_name = "thor"
 domain = "magiccastle.dev"
 image = "CentOS-7-x64-2020-09"

main.tf

{ AlmaLinux, Rocky, CentOS 8, RedHat }

14

Edit

 instances = {
 mgmt = {
 type = "p4-7.5gb",
 tags = ["puppet", "mgmt", "nfs"],
 count = 1
 }

main.tf

15

Edit

 login = {
 type = "p2-3.75gb",
 tags = ["login", "public", "proxy"],
 count = 1
 }

main.tf

16

Edit

 node = {
 type = "p2-3.75gb",
 tags = ["node"],
 count = 1
 }
 }

main.tf

About tags and instance names

Tags:

▷ Infrastructure: use to attach devices and volumes
▷ Configuration: use to assign roles and responsibilities

to instances

Instance names are arbitrary and their significance
depends on the configuration environment.

They are not limited to mgmt, login or node.
17

18

Edit

 volumes = {
 nfs = {
 home = { size = 100, type = ... }
 project = { size = 500, type = ... }
 scratch = { size = 500, type = ... }
 }
 }

main.tftag

19

Edit

 public_keys = [file("~/.ssh/id_rsa.pub")]

 nb_users = 10

 software_stack = "eessi"

}

main.tf

About parameters

▷ Default values are a good starting point
▷ Optional parameters were not covered
▷ Documentation details every parameter
▷ Each parameter can be modified at any

point in the cluster life

Next step is to get Terraform to read the
infrastructure code and spawn the cluster.

20

main.tf

https://github.com/ComputeCanada/magic_castle/tree/main/docs#4-configuration

21

Apply

$ terraform apply
Terraform will perform the following actions:
...
Do you want to perform these actions?
 Enter a value: yes

22

Apply

Apply complete! Resources: 37
added, 0 changed, 0 destroyed.

Outputs:

Once the cluster is built...
Its automatic configuration begins.

23

24

Configuration with Puppet

mgmt1

login1 node1

puppet

node2 node3 node4

node5

Abouts tags in Puppet

25

▷ During the apply phase, Terraform copies on
the puppet server a file containing the
information about tags, instances and user
input parameters.
terraform_data.yaml

▷ This information is injected in Puppet
information hierarchy and can be used to
determine an instance role in place of its
hostname.

Preview of MC 12
Autoscaling compute with Terraform Cloud

26

node={type="...", tags=["node"], count=N}

Static

node={type="...", tags=["node", "draft"], count=N}

Elastic

Node specifications as puppet data
 "node4":

 "hostkeys":

 "ed25519": ssh-ed25519 …

 "rsa": ssh-rsa …

 "id": "droid-node4"

 "local_ip": "10.0.0.11"

 "public_ip": ""

 "specs": { "cpus": "2", "gpus": 0, "ram": "8000" }

 "tags": ["node", "draft"]

Made available in Slurm

NodeName=DEFAULT MemSpecLimit=512 State=CLOUD

NodeName=node1 CPUs=2 RealMemory=8000 Gres=gpu:0 Weight=1

NodeName=node2 CPUs=2 RealMemory=8000 Gres=gpu:0 Weight=1

NodeName=node3 CPUs=2 RealMemory=8000 Gres=gpu:0 Weight=1

NodeName=node4 CPUs=2 RealMemory=8000 Gres=gpu:0 Weight=1

NodeName=node5 CPUs=2 RealMemory=8000 Gres=gpu:0 Weight=1

Scaling up on job submission

user

Slurm
controller

submit
job add

node[X-Y]

mgmt1 upload
data

node[X-Y]

apply
plan

create

instances

register

node

1
2

3

4

5
6

Scaling down

Slurm
controller

remove
node[A-B]

mgmt1 upload
data

node[A-B]

apply
plan

delete

instances

1
2

3

4

5

idle
timeout

More details

▷ Cluster side scaling logic is cloud provider
agnostic.

▷ Only uses a Terraform Cloud API token to
modify a single Terraform variable
containing the list of compute nodes

▷ Compatible with Slurm >= 20.11

More details

▷ Compute infrastructure can be heterogeneous.
Slurm will determine which instances to power
up based job’s specification and nodes’ weight.

▷ Resume-suspend script interacting with
TF Cloud is extremely simple and easy to
maintain.

Ref: https://github.com/MagicCastle/elastic-slurm-tf-cloud/blob/main/src/elastic_slurm_tf_cloud/__init__.py

https://github.com/MagicCastle/elastic-slurm-tf-cloud/blob/main/src/elastic_slurm_tf_cloud/__init__.py

How?

1. Create a git repo with MC code for your cluster
2. Link a Terraform Cloud workspace with the repo
3. Configure the workspace variables
4. Add workspace info and token to hieradata
5. Start apply run in Terraform cloud

Reference: https://github.com/ComputeCanada/magic_castle/blob/elastic/docs/terraform_cloud.md

https://github.com/ComputeCanada/magic_castle/blob/elastic/docs/terraform_cloud.md

How fast before the job starts?

▷ 10 minutes when nodes are configured
from a base OS image

▷ 3 minutes when using a snapshot of a
previously configured node

node={type="...", tags=["node", "draft"], count=N, image="node"}

▷ Next release of Magic Castle will allow the definition
of minimal infrastructure that can be scaled up and
down automatically based on the Slurm queue using
Terraform Cloud.

▷ The scaling logic will be cloud provider agnostic.
▷ Terraform Cloud free tier is sufficient for MC needs.
▷ Release is expected by end of September 2022.

37

Summary

Contact & References

▷ Félix-Antoine Fortin (@cmd-ntrf)
felix@calculquebec.ca / felix-antoine.fortin.1@ulaval.ca

▷ Magic Castle git repository:
https://github.com/ComputeCanada/magic_castle

▷ Puppet Magic Castle git repository
https://github.com/ComputeCanada/puppet-magic_castle

▷ Magic Castle puppet environments:
https:/github.com/MagicCastle

▷ MC-Hub
https://www.github.com/computecanada/mc-hub

38

https://github.com/cmd-ntrf
mailto:felix@calculquebec.ca
mailto:felix-antoine.fortin.1@ulaval.ca
https://www.github.com/ComputeCanada/magic_castle
https://www.github.com/ComputeCanada/puppet-magic_castle
https://www.github.com/magiccastle
https://www.github.com/computecanada/mc-hub

